3D Action Recognition Using Multi-Temporal Depth Motion Maps and Fisher Vector

نویسندگان

  • Chen Chen
  • Mengyuan Liu
  • Baochang Zhang
  • Jungong Han
  • Junjun Jiang
  • Hong Liu
چکیده

This paper presents an effective local spatiotemporal descriptor for action recognition from depth video sequences. The unique property of our descriptor is that it takes the shape discrimination and action speed variations into account, intending to solve the problems of distinguishing different pose shapes and identifying the actions with different speeds in one goal. The entire algorithm is carried out in three stages. In the first stage, a depth sequence is divided into temporally overlapping depth segments which are used to generate three depth motion maps (DMMs), capturing the shape and motion cues. To cope with speed variations in actions, multiple frame lengths of depth segments are utilized, leading to a multi-temporal DMMs representation. In the second stage, all the DMMs are first partitioned into dense patches. Then, the local binary patterns (LBP) descriptor is exploited to characterize local rotation invariant texture information in those patches. In the third stage, the Fisher kernel is employed to encode the patch descriptors for a compact feature representation, which is fed into a kernel-based extreme learning machine classifier. Extensive experiments on the public MSRAction3D, MSRGesture3D and DHA datasets show that our proposed method outperforms state-of-the-art approaches for depth-based action recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust 3D Action Recognition through Sampling Local Appearances and Global Distributions

3D action recognition has broad applications in human-computer interaction and intelligent surveillance. However, recognizing similar actions remains challenging since previous literature fails to capture motion and shape cues effectively from noisy depth data. In this paper, we propose a novel two-layer Bag-of-Visual-Words (BoVW) model, which suppresses the noise disturbances and jointly encod...

متن کامل

Deep Convolutional Neural Networks for Action Recognition Using Depth Map Sequences

Recently, deep learning approach has achieved promising results in various fields of computer vision. In this paper, a new framework called Hierarchical Depth Motion Maps (HDMM) + 3 Channel Deep Convolutional Neural Networks (3ConvNets) is proposed for human action recognition using depth map sequences. Firstly, we rotate the original depth data in 3D pointclouds to mimic the rotation of camera...

متن کامل

Depth Pooling Based Large-scale 3D Action Recognition with Convolutional Neural Networks

This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI), for both isolated and continuous action recognition. These dynamic images are constructed from a segmented sequence of depth maps using hierarchical bidirectional ran...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Recognizing Involuntary Actions from 3D Skeleton Data Using Body States

Human action recognition has been one of the most active fields of research in computer vision for last years. Two dimensional action recognition methods are facing serious challenges such as occlusion and missing the third dimension of data. Development of depth sensors has made it feasible to track positions of human body joints over time. This paper proposes a novel method of action recognit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016